effect of al2o3-water nanofluid on heat transfer and pressure drop in a three-dimensional microchannel
Authors
abstract
the fluid flow and heat transfer in a three-dimensional microchannel filled with al2o3- water nanofluid is numerically investigated. the hybrid scheme is used to discretize the convection terms and simpler algorithm is adopted to couple the velocity and pressure field in the momentum equations. the thermal and flow fields were analyzed using different volume fractions of nanoparticles and different reynolds numbers. the temperature fields, the average nusselt number on the bottom surface, the thermal resistance and the pressure drop were obtained from the simulations. results indicated enhanced performance with the usage of nanofluids, and slight penalty in pressure drop. the increase in reynolds number caused increase in the heat transfer rate as well as pressure drop and decrease in the thermal resistance.
similar resources
Effect of Al2O3-water nanofluid on heat transfer and pressure drop in a three-dimensional microchannel
The fluid flow and heat transfer in a three-dimensional microchannel filled with Al2O3- water nanofluid is numerically investigated. The hybrid scheme is used to discretize the convection terms and SIMPLER algorithm is adopted to couple the velocity and pressure field in the momentum equations. The thermal and flow fields were analyzed using different volume fractions of n...
full textEffect of Al2O3-water nanofluid on heat transfer and pressure drop in a three-dimensional microchannel
The fluid flow and heat transfer in a three-dimensional microchannel filled with Al2O3- water nanofluid is numerically investigated. The hybrid scheme is used to discretize the convection terms and SIMPLER algorithm is adopted to couple the velocity and pressure field in the momentum equations. The thermal and flow fields were analyzed using different volume fractions of n...
full textNumerical investigation of heat transfer and laminar Water-Al2O3 nanofluid flow in a rectangular Rib-Microchannel
در تحقیق حاضر در مورد اثرات ارتفاع دندانه در میکروکانال دندانهدار دو بعدی، بر روی پارامترهای انتقال حرارت و دینامیک سیالات محاسباتی جریان آرام نانوسیال آب-اکسید آلومینیم است. بررسیهای این تحقیق به صورت عددی با نرم افزار تجاری فلوئنت3/6 برای اعداد رینولدز10 و 100، برای چهار حالت مختلف ارتفاع دندانه انجام شده است. افزایش ارتفاع دندانههای داخلی یا مغشوشگرهای جریان، عملکرد انتقال حرارت جابجایی د...
full textModeling of TiO2-water Nanofluid Effect on Heat Transfer and Pressure Drop
This paper reports a numerical study on the force convection heat transfer and flow characteristics of a nanofluid containing water and Tio2 with various volume fractions (0.002
full textLaminar Mixed Convection of Al2O3-Water Nanofluid in a Three-Dimensional Microchannel
The fluid flow and heat transfer in a three-dimensional microchannel filled with Al2O3- water nanofluid is numerically investigated. The hybrid scheme is used to discretize the convection terms and SIMPLER algorithm is adopted to couple the velocity and pressure field in the momentum equations. The temperature fields, variation of horizontal velocity along the centre line of the channel, a...
full textThree-dimensional CFD modeling of fluid flow and heat transfer characteristics of Al2O3/water nanofluid in microchannel heat sink with Eulerian-Eulerian approach
In this paper, three-dimensional incompressible laminar fluid flow in a rectangular microchannel heat sink (MCHS) using Al2O3/water nanofluid as a cooling fluid is numerically studied. CFD prediction of fluid flow and forced convection heat transfer properties of nanofluid using single-phase and two-phase model (Eulerian-Eulerian approach) are compared. Hydraulic and thermal performance of microch...
full textMy Resources
Save resource for easier access later
Journal title:
international journal of nano dimensionجلد ۳، شماره ۴، صفحات ۲۸۱-۲۸۸
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023